clc; close all; clear all; %This program is for optimization of spectrum sensing in %Cognitive radio network. N=20; j=1; tt=[]; err2=[]; Pmi=[]; Pdc=[]; error=[]; err1=[]; K=10; snr=10; Qd=0; Qf=0; tt=10:0.5:60; vec=['-+','-o','-v','-d','->','-x','-s','-<','-*','-^']; for n=1:1:10 s=ones(1,N); w=randn(1,N); u=N/2; %Time-delay bandwidth product for t=10:0.5:60 Qd=0; Qf=0; SNR=10^(snr/10); %for linear scale a=sqrt(2*SNR); b=sqrt(t); Pd = marcumq(a,b,u ); % AVG. PROB OF DETECTION(computes the generalized Marcum Q) Pf = gammainc((t/2),u,'upper');% AVG. PROB OF FALSE ALARM(compute incompelete gamma function) Pm=1-Pd; %AVG. PROB OF MISSED DETECTION OVER AWGN for l=n:1:K Qd=Qd+(factorial(K)*(Pd^l)*((1-Pd)^(K-l))/(factorial(l)*factorial(K-l))); Qf=Qf+(factorial(K)*(Pf^l)*((1-Pf)^(K-l))/(factorial(l)*factorial(K-l))); end Qm=1-Qd; err=Qf+Qm; err1=[err1 err]; end end l=1; i=1; for j=1:1:10 semilogy(tt,err1(i:i+100),vec(l:l+1),'LineWidth',1.5) i=i+101; l=l+2; hold on; end grid on; ylabel('Total Error rate'); xlabel('Threshold'); %----------------------Energy Detection---------------------------------------- n=5; rel=10000; tt1=10:0.5:60; er1=[]; for t=10:0.5:60 Pdc=0; Pfc=0; Qd=0; Qf=0; Qm=0; for i=1:1:rel SNR=10; snr=10^(SNR/10); s=ones(1,N); w=randn(1,N); vari=var(w); %variance of noise Es=sum(s.^2); N02=(Es)/(2*snr); x1=s+w; x2=w; W=1; %Time-delay bandwidth product E0=(sum(x2.^2))/((W*N02)); E1=(sum(x1.^2))/((W*N02)); if E1>t Pdc=Pdc+1; else end if E0>t Pfc=Pfc+1; else end end Pd=Pdc/rel; Pf=Pfc/rel; for l=n:1:K Qd=Qd+(factorial(K)*(Pd^l)*((1-Pd)^(K-l))/(factorial(l)*factorial(K-l))); Qf=Qf+(factorial(K)*(Pf^l)*((1-Pf)^(K-l))/(factorial(l)*factorial(K-l))); end Qm=1-Qd; er=Qf+Qm; er1=[er1 er]; end hold on; semilogy(tt1,er1,'*r') grid on; ylabel('Total Error rate'); xlabel('Threshold'); legend('n=1','n=2','n=3','n=4','n=5','n=6','n=7','n=8','n=9','n=10','n=5 by modelling');
simulate Wireless communication and sensor networks using MATLAB
Saturday, November 7, 2015
optimization in Cognitive radio network (spectrum sensing, total error rate)
Subscribe to:
Post Comments (Atom)
Its really very interesting one.Thank u for this post.
ReplyDeleteMachine vision cameras
Machine vision automotive industry
Image analysis pattern recognition